2016 CCMTA ANNUAL MEETING
HALIFAX, NOVA SCOTIA

CONCURRENT SESSIONS

TOPIC:
UPDATE ON THE CANADIAN NATURALISTIC DRIVING STUDY (CNDS)

PRESENTER:
DR. CHARLIE KLAUER
RESEARCH SCIENTIST AND LEADER, TEEN RISK AND INJURY PREVENTION GROUP,
PRINCIPAL INVESTIGATOR AND PROJECT MANAGER, CANADA NATURALISTIC DRIVING STUDY,
VIRGINIA TECH TRANSPORTATION INSTITUTE
Canada Naturalistic Driving Study: Transportation Research Possibilities

Charlie Klauer, Ph.D.
Virginia Tech Transportation Institute

CCMTA, Halifax, Nova Scotia
June 19, 2016
Outline of Presentation

- Power of Naturalistic Driving Studies
- Description of Canada NDS
- Videos
- Reduction process
- Results
- Next steps-Canada Insight/InDepth
- Description of the Canada Truck NDS
What are the advantages of Naturalistic Driving approach?

- More detailed driver behavior information in the seconds leading up to:
 - Incidents
 - Near crash
 - Crash

- Greater external validity
 - Information about driver behavior under normal day-to-day pressures

- Rich data set
 - Vehicle data
 - Driver data (demographic/questionnaire)
 - Video
Teen Driving Research at VTTI

- Naturalistic Teenage Driving Study (Complete)
 - 42 Teens, from licensure through first 18 months of driving

- Supervised Practice Driving Study (In Process)
 - 90 Teens, from Learners Permit through first 6 months of independent driving
 - Control Group

- Driver Coach Study (2012)
 - 90 Teens, from Learners Permit through first 6 months of independent driving
 - Feedback Group
Method

- Instrument 42 private vehicles with highly capable data collection systems
 - Collect continuous data beginning within 2 weeks of licensure and continuing for 18 months
 - 25 teens ‘own’ vehicle/17 teens share vehicle with parents
 - 50% male/50% female participants
 - Video, video snapshots, driving performance data, and questionnaire data
The percent of road segments where teenage drivers were speeding greater than 10 mph.
Engaging in Secondary Tasks by Month Since Licensure
Secondary Task Engagement and CNC (Random Effects Logistic Regression)

<table>
<thead>
<tr>
<th>Secondary Task</th>
<th>OR</th>
<th>95% CI</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone - Texting</td>
<td>4.3</td>
<td>1.9/10.0</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Phone - Dialing</td>
<td>7.8</td>
<td>2.7/23.1</td>
<td>2.5</td>
<td>1.4/4.5</td>
</tr>
<tr>
<td>Phone - Talking</td>
<td>0.8</td>
<td>0.4/1.5</td>
<td>0.7</td>
<td>0.5/1.1</td>
</tr>
<tr>
<td>Phone - Reaching</td>
<td>4.7</td>
<td>1.8/11.7</td>
<td>1.4</td>
<td>0.3/6.1</td>
</tr>
<tr>
<td>Object (not phone) - reaching</td>
<td>7.8</td>
<td>3.5/16.8</td>
<td>1.2</td>
<td>0.6/2.3</td>
</tr>
<tr>
<td>Roadside Object - looking</td>
<td>3.7</td>
<td>1.7/8.5</td>
<td>0.7</td>
<td>0.4/1.2</td>
</tr>
<tr>
<td>Radio/HVAC – managing</td>
<td>1.4</td>
<td>0.8/2.7</td>
<td>0.5</td>
<td>0.3/0.9</td>
</tr>
<tr>
<td>Vehicle Operations - performing</td>
<td>2.5</td>
<td>0.9/7.3</td>
<td>0.6</td>
<td>0.2/2.7</td>
</tr>
<tr>
<td>Eating</td>
<td>3.3</td>
<td>1.5/7.2</td>
<td>1.3</td>
<td>0.7/2.1</td>
</tr>
<tr>
<td>Drinking (non-alcoholic)</td>
<td>1.3</td>
<td>0.3/5.7</td>
<td>0.4</td>
<td>0.2/1.2</td>
</tr>
</tbody>
</table>
NTDS Study Publications

Canada Naturalistic Driving Study

Data collection site:
Saskatoon, Saskatchewan
CNDS Primary Research Questions

- What is the distribution of causal/contributing factors to crashes and near-crashes in Saskatchewan, Canada?
 - Rural highways
 - Winter conditions

- What is the prevalence of risky behaviors?
 - Of primary interest is speeding (per speed limit but also per roadway conditions), secondary task engagement, drowsiness, and impairment.
CNDS Study Data collection

- 140 vehicles were instrumented
- Targeted 125 participants/Replaced some participants.
 - Participants were recruited for 24 months, 18 months, or 12 months
 - Data collection occurred from 6/2013-10/2015
- Recruited participants through SGI
 - SGI sent letters to target the population of interest
 - Participants were paid $450 per year
Light Vehicle Recruitment

Target Participant Numbers

<table>
<thead>
<tr>
<th></th>
<th>Age 18-25</th>
<th>Age 26-65</th>
<th>Age 66+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Mileage Commuter</td>
<td>9-10</td>
<td>9-10</td>
<td>12-16</td>
</tr>
<tr>
<td>Low Mileage Commuter</td>
<td>7-9</td>
<td>6-9</td>
<td>12-15</td>
</tr>
</tbody>
</table>

Study Participant Numbers

<table>
<thead>
<tr>
<th></th>
<th>Age 18-25</th>
<th>Age 26-65</th>
<th>Age 66+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Mileage Commuter</td>
<td>3</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Low Mileage Commuter</td>
<td>21</td>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>
Data Acquisition System

- Multiple Videos
 - Machine Vision Eyes Forward Monitor
 - Machine Vision Lane Tracker
- Accelerometer Data (3 axis)
- Rate Sensors (3 axis)
- GPS
 - Latitude, Longitude, Elevation, Time, Velocity
- Forward Radar
 - X and Y positions
 - Xdot and Ydot Velocities
- Cell Phone
 - ACN, health checks, location notification
 - Health checks, remote upgrades
- Illuminance sensor
- Passive alcohol sensor
- Incident push button
- Video
- Audio (only on incident push button)
- Turn signals
- Vehicle network data
 - Accelerator
 - Brake pedal activation
 - ABS
 - Gear position
 - Steering wheel angle
 - Speed
 - Seat Belt Information
 - Airbag deployment
 - etc
NextGen Data Acquisition System
DAS Photos

Main Unit

Front Radar Assembly

Head Unit
Camera Image Samples

- Forward View - color
 - 15 Hz continuous video
 - 640x320 pixels

- Driver Face – Rotated for max pixel efficiency

- Right-Rear View

- Center stack – Pedal Interactions

- Periodic still cabin image, permanently blurred for passenger anonymity
Canada NDS Study Status

- Data collection is complete
- Crash/near-crash and Baseline control segments have been coded
 - Eyeglance coding complete on CNC
 - Eyeglance coding is in process for Baseline control segments
- Working on preparing data for data sharing website
General Study Stats: Preliminary Results

- 83 crashes and 301 near-crashes
- 1,904,813 vehicle kilometers traveled
- 53,718 vehicle hours traveled
CNDS Data Reduction Effort
Data Reduction (similar to SHRP 2 NDS)

- Driver ID by trip
- Crash/Near-Crash identification
- Crash/Near-Crash coding
 - Eyeglance
- Baseline coding
 - Eyeglance
Driver ID by Trip

- In-house developed software
- Takes snapshots from face video at beginning and end of trip.
- Trained coder records driver id.
- SHRP2 NDS could code up to 800 trips per hour
- Non-consented drivers excluded from database
CNC Process: Development of CNDS
“Event” Database

- Events are identified based on “trigger” signatures from the electronic data that are indicative of the presence of a crash, near crash or conflict/incident event.

- Triggers include:
 - Radar-based time-to-collision
 - High lateral acceleration or yaw-rate change
 - Unplanned lane deviation
 - High longitudinal decelerations
 - High longitudinal decelerations with short time to collisions
 - Driver reported crashes
Event Variables

- Pre-Incident maneuver
- Crash/Incident type
- Precipitating factor
- Contributing factor(s)
- Evasive maneuver
- Roadway/Traffic variables
- Weather/Lighting
- Driver’s state
 - Eye glance location
 - Observer rating of drowsiness
- Fault assignment
- Crash reconstruction
- Manual eyeglance for 20 seconds plus 10 s
Baseline Variables

- Roadway/Traffic variables
- Weather/Lighting
- Driver’s state
 - Eye glance location
 - Observer rating of drowsiness
- Manual eyeglance for 20 seconds
Preliminary Results from Canada NDS
Vehicle Description of Canada NDS
Ages of Primary Participants
Types of Crash/Near-Crash in Canada NDS

- Other (leave a note)
- Conflict with merging or weaving vehicle
- Conflict with pedestrian
- Conflict with a following vehicle
- Conflict with obstacle/object
- Conflict with oncoming traffic
- Conflict with parked vehicle
- Conflict with vehicle into path
- Conflict with vehicle across path
- Conflict with animal
- Conflict with vehicle in adjacent lane
- Single vehicle conflict
- Conflict with a lead vehicle
Type of Road Surface Condition for Crashes and Near-Crashes
Next Steps

- **Driver Behavior**
 - Secondary task engagement
 - Drowsiness
 - Impairment
 - Other Risky Behavior

- **Infrastructure**
 - Many intersection crashes
 - Snowy/icy conditions

- **More NDS Data collection??**
 - 140 data acquisition systems are in storage in Canada
Canada NDS Website

Description of SHRP2 InSight Website
Goals for the InSight Website

- Operate a public facing website to support data dissemination from the Canada naturalistic driving study (CNDS) project
 - Background information about the CNDS method and program
 - Interact with CNDS data and data administrators
 - Explore and query collected data based on research criteria
 - Interact with CNDS and SHPR2 NDS data…
 - Differentiate between InSight Data analysis or InDepth data analysis (data sharing agreement).
What Can Users Do With the InSight Website?

- Review data collection procedures and project background
 How was this data collected?
- Explore data inventory, data dictionaries, and download sample data
 What variables are collected and how are they defined?
- Query for how many drivers, vehicles, or trips exist in the database that match various research criteria
 How much data is available that matches my research criteria?
- Review crash, near crash, and baseline events identified and classified during the study
 What were the details and context of the event?
SHPR2 NDS InSight Website:
https://insight.shrp2nds.us/
Welcome to InSight

InSight provides access to data collected during the SHRP 2 Naturalistic Driving Study (NDS).

What's Available on This Website

Driver Descriptions and Assessments
Summary graphs and detailed records of driver assessments are provided addressing driver demographic background, physical, psychological, and medical condition.

Summary of Continuous Naturalistic Data Collected
Graphs and detailed records describe data collection progress and characteristics of trips collected during the study.

Vehicle Descriptions
Summary graphs and detailed records describe the types of vehicles involved in the study.

Custom Query Capability
Build custom queries to search for records matching criteria that span multiple datasets.

Naturalistic Driving Study Background Information
Access an overview of the SHRP 2 Naturalistic Driving Study project, data collection procedures, data dictionaries, and sample data.

Access to SHRP 2 NDS Forums
Join a community of SHRP 2 NDS Forum members to discuss available data, website functionality, and related topics.

What's New

9/10/2013 - New data released! New data include the Barkley's Quick Screen results and over 45,000 trip summaries.

7/8/2013 - SHRP 2 InSight forum website is now available for technical support and general discussion.

7/7/2013 - Query page expanded to include an initial crosstab table configuration tool.

View More...
Build a Query or Select a Data Category to View

Vehicles
View a collection of information about vehicles that were used to collect data in the SHRP 2 NDS.
- Vehicle types (car, truck, van, etc.)
- Vehicle ages and condition
- Amount of data collected per vehicle
- Quantities of vehicles installed
- Vehicle technologies and equipment

Trips
View a collection of information about trips collected and processed during the SHRP 2 NDS. Summary records can be used to screen for trips containing specific characteristics.
- Summary measures describing trips
- Trip length, duration, start time, stop time
- Min, Max, Mean for speed, acceleration
- Trip summary record table

Query Builder
Build and execute customized queries across multiple data tables, create cross tabulations, and view results.
- Select variables and conditions
- Submit query, assess results
- Build cross tabulations

Drivers
View a collection of information about drivers that participated in the SHRP 2 NDS.
- Quantities of drivers
- Amount of data collected per driver
- Driver demographics and driving history
- Driver physical and psychological state
- Driver participation experience

Crashes
View a collection of information about crash, near crash, and baseline events captured during SHRP 2 NDS.
- Crashes by severity
- Detailed crash assessment records
- Crash event viewer
Driver Data Selection

Click ▼ to show, or ▲ to hide, additional information about each data item.

- How many drivers have participated in the study?
 - Drivers by Age Group
 - Drivers by Age Group and Gender
 - Drivers Active and Completed

- How much data has been collected from drivers, processed, and made available on this website?
- What are the demographic traits and driving history of participating drivers?
- What is the physical and psychological condition of participating drivers?
- What medical conditions and medications did driver report actually experiencing during the study?
- What was the driver’s participation experience during the study?
Accessing the NDS Data: Why we need Data Use Licensing

- Promises were made to participants and to the Research Ethics Board and Institutional Review Board overseeing the data collection
 - Additional use of data is subject to REB/IRB approval
 - Additional use of original data (whether identifying or not) requires a data use license
 - Identifying data (PII) can only be used in a secure data enclave
 - Only de-identified summary data can be readily shared
 - But this term is still not fully defined or vetted
- All original data must eventually be deleted so usage must be tracked
Website Users

- Some original data can be viewed and queried from the website (cannot be downloaded because of tracking requirement)
- Need some minimal qualifications for users of original data on website
 - Proof of training in human subjects protection (REB training certificate, IRB training certificate)
- Users can only view background information about the study
- Qualified researchers can view and query all data available on the website
 - Have submitted a training certificate
Other Data Users

- Those who want to hold a subset of the data locally or come to the secure data enclave to work with PII must submit a data use license application
 - Includes Purpose, Scope, and Data Specification (exactly which subset of the data do you need?)
 - Requires proof of REB/IRB approval (or proof of exemption)
 - Requires a data security plan (to ensure data will be held at the level of security promised to participants)
 - If there is a cost associated with extracting the data, the contract must be executed prior to the DUL (DUL is a license to use the data, does not mention money)
Common Misunderstandings

- REB/IRB training certificate is proof of REB/IRB approval for a project
 - REB/IRB training certificates are issued to individuals upon completion of a course and do not confer approval for specific research projects
 - REB/IRB approval or proof of exemption is granted to a project (typically involving a group of researchers)
- Training certificate – issued to individual, used to become Qualified Researcher
- REB/IRB approval – issued to project, used to obtain data use license
- Data use license – agreement between institutions, not individuals (if a researcher moves to a new institution, they will need a new DUL to continue working with the data)
Canada Naturalistic Truck Driving Study

Charlie Klauer, VTTI
Project Status

- 25 trucks completed data collection
 - 25 participants (3 teams)
 - 2 females
 - 5 trucks with long routes (7-10 days on and 3-4 days off)
 - 2-3 double-trailer drivers

- Two minor crashes known to-date.
Procedure

- Collect questionnaire/assessments on drivers
 - Based upon other commercial NDS studies
 - Driver logs
 - Driver abstracts

- Instrumented 25 trucks (with reinstrumentations)
 - Similar DAS as light vehicle study with cameras, radar, accelerometers, etc.

- Collect data for ~12 months = ~22 data years.
Questions, Additions, or Concerns?
CNDS Strengths

- Better view for distraction
 - Center stack
 - Driver

- Drowsiness coding

- Weather

- Cars and Heavy Trucks

- It is in Canada and Unique

- Roadway data???

- Possible enhancements to build strength
 - More detailed fatigue assessment could be added (obtain separate funding)
 - Canada specific baseline
The Canada NDS was funded by the Council of Deputy Ministers Responsible for Transportation and Highway Safety and CCMTA

Questions???