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Abstract

A series of tests were conducted to determine the strength and failure modes of a range
of heavy truck cargo anchor points. It also investigated the effect of corner radius and
chain link orientation on the strength of a tiedown chain stretched around a steel corner.
The tests covered a range of types and grade of anchor point, for various tiedown
attachments and a number of pull directions. Most test articles were strain-gauged to
provide insight into their structural performance, and most were tested to failure. The
maximum loads applied were collected, tabulated, and are presented graphically.
Observations noted during the tests, and from the test data, are presented and
discussed.

The results show a very wide range of load capacity, both between and within types of
anchor point. In most cases, the load capacity also varies significantly with the direction
of loading. Most anchor points started to yield at quite low loads, and deformed
substantially as the test progressed. Limited finite element analyses compared well
with corresponding strain data from tests.

This work leads to recommendations that cargo anchor points should be designated on
heavy trucks, and should be provided with a load capacity rating.



Executive Summary

A lack of understanding of the technical basis for existing regulations on cargo
securement meant it was not possible to resolve differences between them to revise a
cargo securement standard for Canada's National Safety Code. This process identified
a number of research needs, which are now being addressed through the North
American Load Security Research Project.

This preliminary work identified issues related to cargo anchor points, to which tiedowns
are attached. This work addresses these through a series of tests to evaluate the
strength and failure modes of typical anchor points, including stake pockets, D-rings,
winches, chain-in-tubes, welded rods and rub rails, even though it may not be an
intended use of the latter. Tests were conducted for various pull directions, and also
included the effect of chain wrap configuration on stake pockets. Another series of tests
to examine the effect of corner radius and chain link orientation on the strength of a
chain tiedown stretched around a steel corner was conducted concurrently, and are also
reported here.

Most test articles were strain-gauged to provide insight into their structural performance.
The strain gauges were located and oriented from the results of a preliminary finite
element analysis of typical test articles and loads. Most tests continued loading until
fracture occurred, and data included time-histories of applied load and strain responses.
The maximum loads applied are presented and discussed, together with observations
noted during the tests, and subsequently from analysis of the test data.

The ultimate loads varied widely between and within the various types of anchor point,
and the achievable ultimate strength, except for D-rings, generally varied significantly
with the direction of loading. Most anchor points started to yield at loads as low as 10-
20% of their ultimate strength, and became severely deformed as the test progressed.
A preliminary comparison of selected finite element analytical results with corresponding
test data shows good correlation. Finite element analysis should be a viable tool for
designing and rating heavy truck cargo anchor points.

The preliminary work to select anchor points found a great variety, for a wide range of
purposes, at a wide range of load capacity, and formal load ratings may not always be
readily available. This makes it difficult for motor carriers to be assured that cargo is
adequately secured, especially when heavy individual articles are carried. For these
reasons, it is recommended that vehicles that can carry heavy articles of cargo should
have anchor points designated for securement of that cargo; that all anchor points
should be provided with a load capacity rating that reflects the possible directions of
loading; and that manufacturers of anchor points should be involved in the developing
appropriate standards and ratings. It is also clear that a systematic method should be
developed to evaluate when a damaged anchor point should be repaired or replaced.

This report presents technical results from just one task in this project. The results may
be limited by the scope of this task, but are placed in context in the summary report.
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1/ Introduction

Security of cargo on heavy trucks is a matter of public safety, subject to a body of
industry practice and government regulation. Cargo securement regulations are broadly
similar across North America's many jurisdictions, but there are also some significant
differences. When the time came for the Canadian Council of Motor Transport
Administrators (CCMTA) to revise a cargo securement standard for Canada's National
Safety Code, a lack of understanding of the technical basis for existing regulations
made it impossible to resolve differences between them, and a number of research
needs were identified. Ontario Ministry of Transportation prepared a draft proposal for
this research that was widely circulated for review through governments and industry.
The proposal was revised and became the work statement for the CCMTA Load
Security Research Project [1]. This has three objectives :

e To determine how parts of cargo securement systems contribute to the overall
capacity of those systems;

e To demonstrate the adequacy of parts, and the overall capacity, of cargo
securement systems; and

e Todevelop principles, based on sound engineering analysis, that could contribute
to an international standard for cargo securement for heavy trucks.

The goal is to supplement existing practice with these research findings to develop
uniform North America-wide standards for cargo securement and inspection.

Cargo carried by flatbed, specialty or van trailers is often secured by tiedown
assemblies attached to anchor points on the vehicle. Load ratings of tiedowns are
generally available, but review of existing equipment and cargo securement regulations
showed that the load capacity of anchor points was generally unknown [1]. This raised
two issues :

1/ New vehicle standards; and
2/ Rating of existing vehicles.

Setting a new vehicle standard for rating cargo anchor points will resolve the issue of
the adequacy of anchor points over the long term. This is a federal responsibility, and
Transport Canada now has such a standard under development, so this issue needs
no further attention here.

However, some means of rating the capacity of anchor points on existing vehicles will
be required for the foreseeable future, until all vehicles meet the new vehicle standard.

A test program was therefore conducted of a number of typical heavy truck cargo
anchor points, as outlined in Sections 7.2 to 7.8 and 8.3 of the project proposal [1]. It
was supported by analysis using the finite element method to assist in the evaluation
of the structural performance of these anchor points.



2/ Test Program
2.1/ Objective

The objective of the test program was to evaluate the strength and modes of failure of
typical heavy truck cargo anchor points under different loading conditions, and to help
establish a viable basis for devising a set of North America-wide guidelines or
recommendations under which these anchor points can be used safely.

2.2/ Scope
The following types of anchor point were evaluated:

1/ Stake pockets;

2/ D-rings;

3/ Winches;

4/  Chain-in-tubes;
5/ Welded rods; and
6/ Rubrails;

For each of the above anchor point types, individual samples were tested in different
loading directions that would emulate both typical and critical conditions under which
these anchor points are being, or would be, used. These included tests to investigate
the effect of the manner in which a chain would be hooked to or wrapped around a
stake pocket or rub rail on the strength of the anchor point itself. An additional set of
tests were conducted to evaluate the effect of the radius of a sharp corner and of the
orientation of the chain link on the ultimate strength of a typical tiedown chain.

3/ Procedures
3.1/ Test Apparatus

All tests were conducted on a Tinius-Olsen (T.0.) loading machine with a maximum
capacity exceeding 80,000 Ib. A picture of the machine is provided in Figure 1.

The loading mechanism of the machine derives from its three major components: the
bulkhead at the top, the crosshead in the middle, and the platform at the bottom. The
bulkhead and the platform move as a unit while the cross-head remains stationary. The
machine was originally designed to exert compressive loads by placing the test
specimen between the platform and the cross-head and moving the platform upwards
against the crosshead. Separate controls are available to adjust the initial location of
the crosshead, and to adjust the rate of loading, which is measured as force per unit
movement of the platform with respect to the crosshead. Digital readouts are provided
for the magnitude of the load being applied and the rate of loading.



For the purpose of these anchor point
tests, however, a pulling load was
required. Thus, the test specimen was
secured to the top of the crosshead and a
high-strength loading chain or shackle
was connected between the specimen
and the bulkhead of the loading machine.
By moving the platform, and hence the
bulkhead, upwards, a pulling load was
applied to the specimen. To facilitate the
performance of all tests on a common test
rig, a number of specially designed
mounting assemblies and adapters were
fabricated. These included the following:

(i)  Bi-directional Slide Table:

The slide table was comprised of a
stack of three thick steel plates. As
an assembled unit, overall
dimensions of the slide table were
610x610x305 mm (24x24x12 in).
Figure 2 shows the slide table
assembly and the bolts that mount it
to the crosshead, and Figure 3
shows it already mounted on the
T.0. machine. The top plate was
fitted with a number of threaded
holes for bolting down test
specimens, and thus was used as a
universal mounting base for all test
specimens. The middle plate was
fitted with sliding guides on the top
side to allow the top plate to slide in

platform @

e

Figure 1:  Tinius-Olsen Loading

Machine

one direction, and on the underside to allow the bottom plate to slide in a
perpendicular direction. Stop screws were fitted onto the middle plate to limit

sliding when necessary.

(i) Upper Anchor Assembily:

This is shown in Figure 4. The two huge bolts were used to mount the assembly
to the underside of the bulkhead of the T.O. machine. It provided an anchoring
point for the chain or shackle that was to be connected to the test specimen to

exert the pulling force.
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(i)

(iv)

Load Orientation Adapters:

Four adapters were built for mounting test specimens in specific orientations with
respect to the vertical to achieve various prescribed loading directions. These
included two adapters for vertical/lateral loads, and two for 45 deg angled loads,
as shown in Figure 5.

Insert Load Connector for Stake Pocket Tests:

A special load connector was made for the stake pocket tests. This connector,
consisting of a steel block insert with a large hole for hooking up to a shackle
attached to the pull chain, was placed inside the pocket for one series of stake
pocket tests. A "stop plate" was bolted onto the other end of this block insert.
Depending on the specific size of the pocket, one or more steel inserts could be
added between the block insert and the stop plate so that a constant distance was
maintained between the base of the pocket and the point of attachment of the pull
chain or shackle on the block insert for all stake pocket tests. Figure 6 shows the
various components of this stake pocket load connector.

hole for hook placement

block insert

extra
inserts

stop plate

—

bolt holes =

Figure 6:  Insert Load Connector for Stake Pocket
Tests



(v) Tiedown Adapter Plate and Corner Radius Dies (for Corner Radius and Chain Link
Orientation Tests):

A rectangular plate fitted with an anchoring point at opposite ends of its length was
made available for use in testing the effects of corner radius and chain link
orientation, along with three dies each with a given corner radius, namely, 1.59
mm (1/16 in), 12.7 mm (1/2 in), and 25.4 mm (1 in), as shown in Figure 7. The
plate was reinforced with a steel gusset welded along its edges lengthwise. It was
to be bolted down onto the slide table, and was for tying down the test chain so
that an angle of about 90 deg was subtended by the test chain around the corner
radius die.

tiedown

Tiedown Adapter Plate and corner Radius
Dies

In addition, a number of high-strength pull chains, shackles in various lengths, and
various sizes of hooks and other fittings were also made available. These all had load
ratings adequate for the tests for which they were intended. Typically, chains were used
in tests involving the rub rails, chain-wrapped pockets, chain-in-tubes, and the light-duty
welded rods and D-rings, while shackles were used mostly in testing the stake pockets,
winches, and the medium- and heavy-duty welded rods and D-rings. Figure 8a shows
a typical test setup consisting of the loading machine, the slide table, and the upper
anchor assembly, with a typical pull chain installed.

To simulate field mounting conditions and to facilitate setting up the test specimens for
all tests onto the loading machine, all specimens, with the exception of the test chains
used in testing the effects of corner radius and chain link orientation, were welded onto
a 25.4 mm (1 in) thick mounting plate measuring 304.8x304.8 mm (12x12 in) in area
(except for tests involving rub rails, where the mounting plates measured



304.8x914.4 mm, or 12x36 in, in order to accommodate two stake pockets). Nine
15.9 mm (5/8 in) diameter bolt holes were drilled into these mounting plates to allow
easy and secure mounting onto the slide table or the load orientation adapters. Figures
8b and 8c show two such premounted test specimens, a rub rail and a chain-in-tube.

vertical/
lateral
adapter

e ';”I-?"' - i

Typical Test Setup




| steel
mounting
plate

Figure 8b: ~Test i (R | owmg
Premounting on Steel Plate

steel
mounting
plate

Figre : Tet pemmen Cham-ln-e)hwmg
Premounting on Steel Plate




3.2/ Strain Gauging

In order to provide more data on the structural performance of the anchor points under
different loading conditions, strain gauges were installed on the majofity of test
specimens, where feasible and practicable, in all categories of test except for the chain-
in-tubes. Linear finite element analysis (F.E.A.) was performed on a typical specimen
for each loading direction in each test category to help identify the locations and
orientations in which these strain gauges should be placed and aligned, so that strain
data would be captured from the most critical areas as much as possible. In all F.E.A.
models, the typical element used was an 8-node solid element.

Figures 9a, 9b, and 9c show F.E.A. stress contours for the three orthogonal stress
components, Sxx, Syy and Szz, for the heavy-duty steel stake pocket loaded in the
longitudinal forward load direction. A load of 222.7 kN (50,000 Ib) was assumed. The
directions of the three stress components are as noted in the figures. Based on these
results, strain gauges were installed on the test specimen as shown in Figure 9d.
Figures 10a, 10b, and 10c show the corresponding stress contours for the case of the
same pocket loaded in the lateral outboard direction. The layout of the strain gauges
installed on this specimen is shown in Figure 10d.

SKX - STRESSES

VIEW § -882039,2
RANGES 750411,9

'

,§+ .
Y]
]

:
&
X
:
&

o B B T S A
LKA TR TS

Y. ROTH
L 20,0

= 15 ROy
load = 50,000 Ib. in direction of X-axis, stresses in psi [EF a1

Figure 9a: Stress Contours Sxx for Heavy-duty Steel Stake
Pocket Loaded in Longitudinal Forward
Direction

10



SYY - STRESSES

VIEW : -848428.4
RANCE: 895085,8

-
e, i
e e

i e gy

i

Figure 9b: Stress Contours Syy for Heavy-duty Steel Stake
Pocket Loaded in Longitudinal Forward
Direction

S22 - STRESSES

VIEW ¢ -305655,0
RANGE$ 324579.1

Figure 9c: Stress Contours Szz for Heavy-duty Steel Stake
Pocket Loaded in Longitudinal Forward
Direction

11



strain gauges

f=d
= B
c ©
= @
Sp sl
2 g ©
D 2o
2
oL 0

mounting plate

$ -847224.6

SXX - STRESSES
Yy

RANGE$ 1020127,

VIEW

Layout of Strain Gauges for Heavy-duty Steel
12

Stake Pocket Loaded in Longitudinal Forward

Direction
Pocket Loaded in Lateral Outboard Direction

@
Q.
=
o
w
wn
e
—
w
)
»
o
L]
-
Y
=]
=
=]
=
Q
£
=
L=
=
(=
o
Q
(=
wn
1]
-
]
o

Figure 10a: Stress Contours Sxx for Heavy-duty Steel Stake

Figure 9d



SYY - STRESSES

$ —734934.9

VIEW
RANGE$ 1433

583,

B
=5
£
]
[+
[')]
"]
4]
1=
e
w
)
b4
"
=
g
(=]
[ =
Q
-
(3]
@
=
=)
£
2
[=)
[ =]
S
=
[Te]
i

=)
m
o

Figure 10b: Stress Contours Syy for Heavy-duty Steel Stake

Pocket Loaded in Lateral Outboard Direction

$2Z - STRESSES

5

t —247150,5

VIEW

RANGE: 321952,

AL
z,cﬂﬁﬁ.n

@
o
=
0
@
]
]
pif
=
R
0
)
bl
L
>
A
- Q
=
(=]
=
Q
Q
-
o
=
z
o.
(=]
=
(=]
e
L
-
m
o

Figure 10c: Stress Contours Szz for Heavy-duty Steel Stake

Pocket Loaded in Lateral Outboard Direction

13



lateral outboard
load direction
strain gauge

mounting plate strain gauges

Figure 10d: Layout of Strain Gauges for Heavy-duty Steel
Stake Pocket Loaded in Lateral Outboard
Direction

3.3/ Instrumentation and Data Acquisition

A "pull-cord" displacement transducer was installed, with the help of magnetic bases,
between the slide table and the bulkhead of the T.O. machine. It was intended to
provide a measure of the deformation of the test specimen in the pertinent loading
direction as the specimen was pulled. It was observed, however, that the measurement
also included significant deformations and shifting of components in the pull chain or
shackle. As attempts to account for these contaminations were largely unsuccessful,
the pull-cord measurements could at best be used only as rough estimates.

For some test specimens, attempts were also made to install displacement transducers
at selected locations on the specimen to provide additional data regarding deformations
of the test specimen in specific directions in relation to the applied load. Several types
of displacement transducers were used. The accuracy and consistency of the resulting
measurements were found to be less than adequate. It was therefore also determined
that these measurements could be used only as rough estimates.

An inhouse-built data acquisition system was used to capture data from the above-
mentioned sensors, plus the digital load output from the T.O. machine. The system was
based on a portable AT-class personal computer, and was capable of capturing eight
channels of data. All channels were low-pass filtered at 1 Khz. At the beginning of the
testing program, the sampling rate was initially set at 50 Hz. As testing progressed, it
was found that, with a suitable loading rate at which load was increased or decreased
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on the test specimen, a lower sampling rate of 10 Hz was still adequate. Thus for some
tests, a sampling rate of 10 Hz was adopted.

3.4/ Test Procedure

All eight categories of test were performed using the common test rig set up on the
Tinius-Olsen loading machine, shown in Figure 8 previously.

a/ Setting Up the Test Rig

The stop screws on the slide table were set to prevent any movement of the sliding
plates during installation. The slide table was lifted onto the top of the cross-head with
the help of a block and pulley system mounted on an overhead crane. Once the table
was centred properly over the cross-head, it was bolted down from the underside. The
upper anchor assembly was then bolted onto the top bulkhead.

The initial position of the loading machine's platform was checked to ensure it was at
a height that was within the calibrated loading range for the loading machine. The
crosshead was set to a suitable height to allow sufficient clearance between it and the
platform. Depending on the desired loading direction for a given specimen, a load
orientation adapter was mounted onto the slide table if needed. A pull chain or shackle
of a suitable length, and fitted with a hook of a suitable size, was installed onto the
upper anchor assembly.

b/  Installing the Test Specimen

Stake pockets, D-rings, winches, welded rods, chain-in-tubes, and rub rails had already
been attached to mounting plates, and these were bolted down either onto the slide
table directly or onto the load orientation adapter, as appropriate. The height of the
cross-head was adjusted. The specimen was loosely hooked up to the pull chain or
shackle in the desired manner depending on the requirements of the specific test.

In the case of the corner radius and link orientation effects tests, the die for a given
corner radius was suspended from the end of the pull chain or shackle. The tiedown
adapter was bolted down onto the slide table. The test chain was passed over the
corner radius die and connected to the two anchor points on this adapter plate. The
length of the chain was selected so that the chain would subtend an angle of
approximately 90 deg, with the selected chain link orientation, over the die when
anchored down onto the adapter plate.

All stop screws on the slide table were then released, and remained so for the duration
of the test to allow the pull chain or shackle to stay vertical as the test specimen
changed its orientation with respect to the prescribed loading direction as it underwent
deformation. The position of the specimen was adjusted by moving slide table
components until the specimen was properly aligned with respect to the desired loading
direction, as evidenced by the vertical position of the pull chain or shackle. Once
alignment was achieved, the crosshead was given one final adjustment until there was
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only a slight slack in the pull chain or shackle.

¢/ Installing Sensors

The pull-cord displacement transducer was installed, using magnetic bases, between
the top bulkhead and the slide table, or the load orientation adapter, if one was used.
The strain gauges were hooked up to the bridge completion boxes. Displacement
transducers on the specimen, if any, were also installed. The pull chain or shackle was
given one final check, and any necessary adjustments of the crosshead were made, to
ensure it was not overly slack or tensioned as evidenced by the load readout on the
T.O. machine. All instrumentation was then connected to the data acquisition system.

d/  Test

All sensors were zeroed as accurately as possible and calibrated, which consisted of
recording the zero, half-scale, and full-scale outputs of each data channel, followed by
several seconds of zero data. Loading was then started at a steady rate, generally
between 2,000 kN/m (11,406 Ib/in) and 4,000 kN/m (22,812 Ib/in) of vertical movement
of the bulkhead.

Typically, load was increased until visible breakage was observed in the specimen,
which was usually accompanied by an audible cracking sound or bang depending on
whether breakage was slow or quick, or until load was observed to have become
constant over a sustained time period, or until load had exceeded about 89 kN (20,000
Ib) (in order not to overload the pull chain or shackle unnecessarily), whichever occurred
sooner. In a number of cases, such as some stake pockets, D-rings, and welded rods,
loading was continued until either failure of the specimen was realized, or the applied
load reached the maximum strength of the pull chain or shackle (about 125 kN (28,000
Ib) and 200 kN (45,000 Ib), respectively). In all cases, loading was immediately halted,
and the cross-head raised sufficiently to release the tension in the pull chain. Data
acquisition was also stopped.

The maximum load reached in any given test was noted. The test specimen was
carefully inspected before it was removed. Observations were noted of any visible
damage and of the mode of failure, if failure had occurred. The entire test setup,
including the slide table, the load orientation adapter if one had been used, the pull
chain or shackle, the hook, mounting bolts, and all other fittings were visually inspected
for possible damage. If damage was found in any component, that component would
either be repaired or replaced, as appropriate, before testing would continue. In cases
where any component of the test setup had been found to have failed prematurely, the
component would be repaired or replaced, as appropriate, and the test repeated.

Colour still photographs and slides were taken of all test setups and of the test

specimens before, during, and after each test. Detailed records were kept of all test
activities and observations. Selected test sessions were also recorded on video tape.
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3.5/ Test Matrices

With small variations as necessitated by a given test, and as noted where appropriate,
the test procedure described in Section 3.4 was applied to all eight categories of test.
Typically, only one specimen was made available for each specific test. Each specimen
was visually examined, as much as possible, for proper workmanship before testing.
A total of over 150 test specimens were tested.

In the following, all eight categories of test are described briefly as to the associated
materials, grades or sizes, loading directions, and other relevant information pertinent
to each category of tests, as needed. The loading directions are shown in Figures A.1
through A.8, and the resulting test matrices tabulated in Tables A.1 through A.8, of
Appendix A.

a/ Stake Pocket

Three grades of ASTM A36 steel stake pockets, namely, light-duty with dimensions of
76x102x4.76 mm (3x4x3/16 in), medium-duty with dimensions of 102x102x4.76 mm
(4x4x3/16 in), and heavy-duty with dimensions of 102x102x6.35 mm (4x4x1/4 in), were
tested in four different loading directions (vertical, longitudinal forward, lateral outboard,
and at a 45 deg angle outboard). Similarly, a number of light-duty and medium-duty
6061-T6 extruded aluminum stake pockets were also tested. The light-duty aluminum
pockets measured 88.9x102x6.35 mm (3 1/2x4x1/4 in), and the medium-duty
102x102x6.35 mm (4x4x1/4 in). These stake pockets are typical of those used on
highway trailers. Stronger pockets may be used for load-bearing stakes on specialized
trailers. A number of strain gauges, varying between three and six depending on the
specific specimen, were installed on each pocket. A total of 20 specimens were tested.

b/ D-rings

Three grades, namely, light-duty, medium-duty, and heavy-duty, of steel D-ring were
selected for testing. These measured 3.18 mm (1/8 in), 9.53 mm (3/8 in), and 12.7 mm
(1/2 in), respectively. Each grade of D-ring was subjected to loading in seven
directions. For each heavy-duty rod specimen, a number of strain gauges were
installed on the clip and the ring itself. A total of 21 specimens were tested.

¢/ Winches

Six models of commercially available winch encompassing two profiles (high and low)
and three attachment methods (welded, sliding, and clipped) were tested in three
loading directions, namely, vertical, lateral outboard, and at a 45 deg. angle outboard.
A 152 mm (6 in) wide high-strength webbing with an ultimate strength of 1,403 kN/m
width (8,000 ib/in) was used for all tests, so that the winch would fail, not the webbing.

All winches were instrumented with between two to four strain gauges. For each of the

clipped and sliding winches, two additional stain gauges were installed on the clip and
track on which these winches were mounted. A total of 18 tests were performed.
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d/  Chain-in-tubes

Three commercially available models of chain-in-tube anchor points were tested in three
pull directions, namely, vertical, lateral, and at a 45 deg angle, for a total of 9 tests. For
ease of reference, these models were designated "A", "B", and "C". Models "A" and
"B", supplied by the same manufacturer, shared a similar design, except for the way the
steel clip, to which the chain was attached, was mounted: in Model "A", the clip was
welded onto the supporting frame while in Model "B", it was bolted onto the frame.
Model "C", supplied by another manufacturer, was of a different design. The clip to
which the chain was attached was also welded onto the supporting frame.

No strain gauges were used on these test specimens.
e/ Welded Rods

Three sizes of ASTM A36 steel welded rod, measuring 6.35 mm (1/4 in), 9.53 mm (3/8

in), and 12.7 mm (1/2 in), were each tested in seven loading directions, for a total of 21
tests. Between two and three strain gauges were installed on each of the heavy-duty
rod specimens.

f/ Chain Wraps on Stake Pockets

For these tests, a standard 8.53 mm (3/8 in) Grade 8 steel chain, with a 3,220 kg
(7,100 Ib) working load limit, was used on two types of pockets, one constructed of
ASTM A36 steel, and the other of 6061-T6 extruded aluminum. The steel pockets were
of the medium-duty grade, measuring 102x102x4.76 mm (4x4x3/16 in), while the
aluminum pockets were also of the medium-duty grade, measuring 102x102x6.35 mm
(4x4x1/4 in). Each pocket was instrumented with between two and four strain gauges
depending on the specific test requirement.

For each pocket type, six wrap configurations were tested. Five of these pertained to
a chain wrapped around or hooked onto a single pocket. The remaining one was for
a chain wrapped around two pockets.

For four of the five single-pocket wrap configurations, three loading directions (vertical,
45 deg forward, and 45 deg aft) were used, whereas the fifth single-pocket method and
the double-pocket method were both tested only in the vertical loading direction.
Thus, a total of 30 test configurations resulted.

g/ Rub Rails

A total of 10 tests were performed. These pertained to two materials (ASTM A36 steel
and 6061-T6 extruded aluminum), two loading directions (vertical and 45 deg inboard)
for each of the two chain locations of between the spool and the stake pocket, and at
the spool, and the vertical loading direction for the around-the-spool chain location.
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The steel rub rail specimens were each comprised of a 76.2x9.53 mm (3x3/8 in) rub rail
welded onto two medium-duty steel pockets with dimensions of 102x102x4.76 mm
(4x4x3/16 in) and a 50.8 mm (2 in) diameter steel pipe spool. The aluminum specimens
were each constructed of a 50.8x9.53 mm (2x3/8 in) rub rail welded onto two medium-
duty aluminum pockets, which measured 102x102x6.35 mm (4x4x1/4 in), and a
50.8 mm (2 in) diameter aluminum pipe spool.

For all steel and aluminum specimens, spacing between the spool and pockets was
305 mm (12 in) centre-to-centre. On each steel or aluminum specimen, two strain
gauges were installed on the rub rail, one near the rub rail-to-pocket joint and the other
near the rub rail-to-spool joint.

h/ Corner Radius and Chain Link Orientation Tests

Three sizes of chain were used in this series of test. They consisted of a 6.35 mm
(1/4 in) Grade 40 chain with a working load limit of 1,180 kg (2,600 Ib), a 7.94 mm
(5/16 in) Grade 70 chain with a working load limit of 2,130 kg (4,700 Ib), and a 9.53 mm
(3/8 in) Grade 40 chain with a working load limit of 2,450 kg (5,400 Ib). All were tested
with three different corner radii of 3.18 mm (1/8 in), 12.7 mm (1/2 in), and 25.4 mm
(1in), and three chain link orientations (flat link, upright link, and link interlock) over the
given corner radii.

One control test for each chain size was also performed. This test consisted of pulling
the same make of chain without the corner radius die. To achieve this, the corner
radius die was replaced by a clevis. One end of each of two separate lengths of chain
was connected to the clevis while the other end was connected to one of the two anchor
points on the tiedown adapter plate.

One strain gauge was installed about midway in each half-length of each of the chains
tested. A total of 30 tests, including the control tests, were performed.

3.6/ Data Processing

All test data - applied load, strains, and displacements - were visually scrutinized to
screen out any untoward or bad data. Filtering, if needed, and zero baseline correction
were then performed to eliminate non-zero offsets, and plots were made of the data in

the form of time-histories. Strain gauge and displacement data were also plotted
against the pertinent applied load.

4/ Test Results and Observations

4.1/ Test Results

The maximum loads applied on individual test specimens are summarized in Tables B.1
through B.8 of Appendix B, for all eight categories of test. Observations of physical

19



damage incurred in any part of a given test specimen, such as breakage or permanent
set, and whether or not a given test specimen's ultimate strength had been reached are
also noted in these tables.

The "maximum load applied" refers to the maximum load applied in a given test at which
either (i) the given test specimen was seen to have suffered breakage, such as tearing
of a weld or material or severance of a part, or, when no breakage was evident,
substantial permanent set such that the specimen had become unusable or
unserviceable, in which cases the damage would be noted accordingly in the respective
tables, or (ii) the given test was stopped, either because no further information would
be gained by continuing, or there was significant risk of damage to some component(s)
of the test rig. For the vast majority of tests, the "maximum applied load" does
represent the ultimate load. For a few others, it does not.

In addition, the load level at which any part of a given anchor point specimen exhibited
permanent set or yield as identified by the available strain gauge data, referred to
hereafter as the "yield load", has also been noted in the tables. It must be emphasized
that this "yield load" was by no means the true yield load at which any part of the given
specimen actually reached yield. In fact, this value would in general be higher than the
true yield load.

All maximum applied loads are also presented in the form of bar charts as shown in
Figures 11 through 39. For any given test, the respective "yield load", when this value
was available, is denoted as appropriate by a white bar in these charts to allow an
appreciation of how it compared against the respective ultimate load.

4.2/ Test Observations

Fracture failure was observed in the vast majority of specimens that were tested. Of all
tests, only a few needed to be repeated because of equipment or instrumentation
failure. While the tests were relatively limited in scope, as only one specimen was made
available for each test, all test data collected appeared to be in good and consistent
conditions.

Findings and observations pertinent to each category of test are described below:

a/  Stake Pockets

The maximum loads applied in various loading directions for all steel and aluminum
stake pocket tests are shown in Figure 11. These loads are further broken down with
respect to specific loading directions and shown in Figures 12, 13, 14, and 15 for the
vertical, longitudinal forward, lateral outboard, and 45 deg lateral outboard load
directions, respectively.

The following observations can be made:

o  Allthree grades of steel pocket attained a load of over 200 kN (45,000 Ib) without
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b/

any breakage in the vertical load direction, although permanent set was observed
at the lower end of each pocket where the pocket contacted the stop plate of the
insert load connector.

The steel pockets were generally stronger than their aluminum counterparts in any
given loading direction by a factor of up to more than two, the greatest difference
being observed for the vertical load direction.

The steel and aluminum pockets were much stronger in the vertical loading
direction than in the other directions for the same pocket grade, by a factor of as
much as 4. The longitudinal forward load direction proved to be the most critical
(i.e. weakest) loading direction for both steel and aluminum pockets, followed by
the lateral outboard direction.

Failure was typically characterized by breakage in the weldment area for all steel
and aluminum pockets.

The aluminum pockets were seen to be more "brittle" than the steel counterparts
in that breakage would occur without much warning whereas the steel pockets
would exhibit substantial ductility prior to the onset of breakage.

Yield loads ranged from as low as 10% to 60% of the respective ultimate loads
(Figures 12 - 14).

D-rings

The maximum loads applied in all load directions for all three grades of D-rings are
shown in Figure 16. For clarity, these are further broken down by the grade of the D-
ring and shown in Figures 17, 18, and 19 for the light-, medium-, and heavy-duty D-
rings, respectively.

The following observations can be made:

o

The ultimate load attained by a given grade of D-ring appeared to be independent
of the load direction.

An ultimate load of just over 200 kN (45,000 Ib) was exhibited by the one heavy
duty D-ring specimen that was tested to failure in one load direction. Although the
other heavy duty D-rings had not been tested to failure in order not to overload the
test rig excessively, it is believed that a similar ultimate load would have been
attained in the other load directions. Ultimate loads for the medium duty and light
duty D-rings were about 89 kN (20,000 Ib) and 33.4 kN (7,500 Ib), respectively.
It is worth noting that the ultimate loads recorded for the heavy- and medium-duty
D-rings appeared to approximate the ultimate strength ratings provided by the
manufacturers.

The heavy duty D-rings were found to be stronger than the medium duty
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c/

counterparts by a factor of about 2. In turn, the medium duty D-rings were
generally stronger than the light duty ones by a similar factor.

For all three grades of D-ring, ultimate failure was characterized by breakage of
the clip in the weldment area and/or breakage of the ring - preceded by necking -
in tension.

Yield loads for the heavy-duty D-rings ranged from 15% to 30% of the respective
ultimate loads (Figure 19).

Winches

The maximum loads applied in all three loading directions for all winch tests are shown
in Figure 20. These loads are further broken down with respect to specific loading
directions, as shown in Figures 21, 22, and 23 for the vertical, lateral outboard, and 45
deg lateral outboard load directions, respectively.

The following observations can be made:

0

d/

For the welded winches, failure was precipitated by breakage of the pawl or the
weldment. For the sliding winches, failure was typically precipitated by excessive
deformation of the track such that the winch would separate from the track, or by
breakage of the pawl. For the clipped winches, failure was typically by way of
breakage of the pawl or the mounting bolts and/or frame. For most tests,
regardiess of the winch type and the mode of ultimate failure, excessive
deformation of the bracket or mandrel of the winch itself that would render the unit
unusable was also evident.

In terms of attaining the highest ultimate loads with respect to loading directions,
the vertical direction was the strongest direction while the lateral outboard direction
was the weakest.

With respect to attachment methods, the welded and clipped winches were
comparable in ultimate strength while the sliding winches were significantly weaker
as a result of the track opening up at fairly low loads (in the range of 3,000 to
4,000 Ib), which rendered the winch unusable even though no part of the winch
itself had yet sustained any physical damage such as breakage of weldment or
permanent set.

Yield loads ranged from 20% to 90% of the respective ultimate loads (Figures 21-
28)

Chain-in-tubes

The maximum loads applied in all three loading directions for all three types of chain-in-
tube are shown in Figure 24. These loads are further broken down with respect to
specific loading directions, as shown in Figures 25, 26, and 27 for the vertical, lateral,
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and 45 deg. load directions, respectively.

The following observations can be made:

0]

e/

Ultimate failure was precipitated by chain breakage, ripping of the pipe, or weld
failure.

The vertical load direction was the strongest load direction, while the lateral was
the weakest, for each type of chain-in-tubes.

Model "B", with a bolted-on clip, was significantly weaker than the other two
models in all load directions.

Despite the relatively high ultimate loads recorded for the vertical and 45 deg. load
directions, it was observed during testing that all specimens sustained gross
plastic deformation of the pipe at loads that were only about 10% -20% of the
ultimate.

Welded Rods

The maximum loads applied in all seven loading directions for all three grades of welded
rod are shown in Figure 28. The following observations can be made:

o

f/

For all three grades of rod, ultimate failure was characterized by weld failure or
breakage of the rod - preceded by necking - in tension.

The out-of-plane pull direction (Y-axis, Figure A.5 of Appendix A) was the
strongest direction for all sizes of welded rods. However, no clear trend could be
established regarding the impact of the other load directions on the ultimate
strength of the welded rods.

The heavy-duty rods were found to be stronger than the medium duty counterparts
by a factor of about 1.7. In turn, the medium-duty rods were generally stronger
than the light-duty ones by a factor of 2.

For the heavy-duty welded rods, yield loads ranged from 10% to 80% of the
respective ultimate loads (Figure 28).

Chain Wraps

The maximum loads applied in all three loading directions for all chain wrap tests are
plotted as shown in Figure 29. These loads are further broken down with respect to
specific loading directions, as shown in Figures 30, 31, and 32 for the vertical, 45 deg.
forward, and 45 deg. aft load directions, respectively.

The following observations can be made:
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g/

For the aluminum pockets, failure was without exception characterized by weld
failure accompanied by slight to moderate localized plastic deformation in the
areas where the pull chain or hook contacted the pocket. For the steel pockets,
however, “failure” was less precise as all specimens exhibited gross plastic
deformation in the contact area as the chain or hook cut into the pocket material,
with only three cases also exhibiting weld failure. Thus, the steel pockets provided
more advance warning of failure than the aluminum counterpart.

Chain wraps on steel pockets in general exhibited significantly higher ultimate
loads than those on aluminum pockets.

Wrap method "c" appeared to be the weakest among the six methods tested for
both steel and aluminum pockets.

For a given wrap method, the strongest load direction was in general the vertical
direction.

Yield loads ranged from 5% to 60% of the respective ultimate loads (Figures 30-
32).

Rub Rails

The maximum loads applied in all rub rail tests are shown in Figure 33. These loads are
further broken down with respect to specific loading directions, as shown in Figures 34
and 35 for the vertical and 45 deg inboard Ioad directions, respectively. The following
observations can be made:

o

0

h/

The steel rub rails were stronger than the aluminum counterpart by a factor of as
high as 2.

For the steel rub rails, failure was typically in the fashion of gross plastic
deformation of the rail to the extent that the pull chain became caught so that
further testing would become only a test of the chain's strength. Weld failure was
seen only in one case, Test 1.a. For the aluminum rub rails, failure was typically
in the form of weld failure or gross plastic deformation of the metal in areas
contacted by the pull chain

The "over the spool" chain location appeared to offer the greatest ultimate
strength, followed by the "at the spool" and then the "between the spool and
pocket" chain locations.

Yield loads ranged from 35% to 90% of the respective ultimate loads (Figure 33).

Corner Radius and Chain Link Orientation Tests

The maximum loads applied in all tests performed in this category are shown in Figure
36. These loads are further broken down with respect to specific link orientations, as
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shown in Figures 37, 38, and 39 for flat link, upright link, and interlocked links,
respectively. The following observations can be made:

0

The two half-lengths of each test chain showed identical strain response,
indicating continuous load transfer across the corner radius.

There was little or no impact of link orientation on the ultimate strength of a given
size of tiedown chain with a given corner radius.

For the flat link configuration, the ultimate strength of the tiedown chain appeared
to increase with smaller corner radii. This could perhaps be explained by the fact
that with a large corner radius, the chain link failed more in tension while with the
smaller radii, it failed primarily in bending. For the upright link and interlocked link
configurations, the effect of corner radius was less clear. This may be due to the
fact that these two link configurations shifted significantly in orientation during
testing.

Yield loads were typically about 35.6 kN (8,000 Ib) to 40 kN (9,000 Ib) for the

7.94 mm (5/16 in) chain tests, and 71.2 kN (16,000 Ib) to 75.7 kN (17,000 Ib) for
the 9.53 mm (3/8 in) counterpart (Figures 37 - 39).
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All Pockets in All Load Directions
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Figure 11: Maximum Applied Loads for Stake Pocket Tests - All Load
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Figure 14: Maximum Applied Loads for Stake Pocket Tests - Lateral Outboard
Load Direction
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Vertical Load Direction
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Figure 21: Maximum Applied Loads for All Winches in Vertical Load Direction
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Load Direction
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Figure 24: Maximum Applied Loads for Chain-in-tubes in All Load Directions
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Figure 28: Maximum Applied Loads for All Welded Rods in All Load Directions
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Chain Wraps on Steel & Aluminum Pockets
All Wrap Methods, All Load Directions
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Figure 29: Maximum Applied Loads for Chain Wraps in All Load Directions
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Chain Wraps on Steel & Aluminum Pockets
45 deg Aft Load Direction
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Figure 32: Maximum Applied Loads for Chain Wraps in 45 deg Aft Load
Direction
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Steel & Aluminum Rub Rails
Vertical Pull at All Chain Locations
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Figure 34: Maximum Applied Loads for Rub Rails - Vertical Pull at All
Chain Locations
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Corner Radius/Link Orientation Effects
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Figure 36: Maximum Applied Loads for Various Chain Sizes, Corner Radii and
Link Orientations
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Corner Radius Effect with Upright Link
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5/ Discussion
5.1/ Ultimate Load and Allowable Load

While the ultimate loads reached by the individual test specimens as tested in the
pertinent loading conditions present some notion of the ultimate strength of these
anchor points, these should not be used or adopted as design parameters. As was
evident in most of the tests performed, permanent set, or yield, was observed in some
part of the specimens at relatively low loadings compared to the respective ultimate
loads. In many instances, these loadings were as low as 10% - 20%of the ultimate
loads.

By the same token, it may be viewed as unrealistic to use the lowest load at which
yielding has started anywhere in the specimen as the allowable load. However,
conventional "Allowable Stress Design" of steel structures calls for a maximum
allowable stress of between 40% and 66% of the yield stress of the material. In light of
the available test data, this latter approach would certainly preclude the use of many of
the anchor points in the many field conditions under which they are typically used.
Thus, it may be suggested that perhaps a more practicable approach would be one that
would accommodate some amount of yielding in the structure concerned.

In any case, in order to be able to properly evaluate the allowable design load of a given
anchor point, the first and foremost task will be to identify the "yield load", i.e., the load
level at which yielding has started anywhere in the structure. Then one can begin to
address the broader issue of allowable load properly.

5.2 Test vs Analysis

Under ideal conditions, the response-vs-load plots obtained from the test data would
help find the yield load. Of these response-vs-load relationships, the displacement-vs-
load ones are not very useful since, as was mentioned previously, the displacement
data were affected by factors other than deformation of the test article.

In contrast, the strain-vs-load relationships are more useful. The effectiveness and
accuracy of using these relationships in determining the yield load, however, is very
much affected by the size of the strain gauges used, and the location and orientation
of the strain gauges on a given test specimen. It has been noted previously that for
many of the anchor point specimens involved in the present test program, strain-
gauging was either difficult if not infeasible, or could be performed only on a very limited
scale so that the strain data captured more often than not did not reflect the most critical
state of the specimen concerned. Thus, it is believed that for all purposes and intents,
experimental strain data was by itself not sufficient in aIIowmg one to identify the yield
load.

To help overcome such shortcomings, an alternate and more efficient means, such as
finite element analysis (F.E.A.), is called for. It is recalled herein that the layout of strain
gauges for all test specimens was determined with the aid of F.E.A. This alternate
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approach must pass the litmus test of being able to reproduce the test data with
reasonable accuracy. Once such correlation is established, the models can be relied
upon, along with experimental data, for establishing safety guidelines or
recommendations for the use of anchor points and anchoring methods on heavy trucks.

5.3 Correlation of Test and Finite Element Analysis Results

To this end, finite element analyses were performed on a number of test specimens,
using identical loading conditions for the respective test specimens. Most of these
analyses were based on linear models that only represent structural response
accurately at stresses below initial yield, while only a few were based on non-linear
models that also represent the process of yield. The stress results from these F.E.A.
models were then compared to the strain gauge data from the corresponding tests.

Table 1 shows a summary of the comparison of test and analysis results for all models
analyzed. Good correlation can be observed between the two sets of results.

At present, it is premature to state that full confidence has been established in using the
analytical method to recommend guidelines for the use of the anchor points in the field
as the volume of correlation is still quite limited. However, a significant quantity of strain
gauge test data has been collected. In view of the encouraging correlation, a more in-
depth correlation study is being undertaken.

5.4 General Discussion

The test program described here has evaluated a variety of heavy truck cargo anchor
points. It could not assess the universe of anchor points, and it could not even address
the range of products and designs available. Those selected represent some range of
type and capacity of anchor point commonly found on heavy trucks. A number were
simply described for intended usage, such as "light duty" or "heavy duty". Some had
a manufacturers rating. Others simply had no known description or rating. Some were
provided by their manufacturers, some were purchased, and some were fabricated by
MTO. The samples demonstrate a very wide variety of type of anchor point. The
results show that there is wide range of capacity among and within types, especially as
a function of direction of loading. The fact that one type of anchor point may have failed
at a different load than another is not interpreted here, and should not be interpreted in
any way, as an indication of relative merit. It simply leads to a conclusion that each
should have its own defined range of application.

There are various parts of a vehicle structure that are used as anchor points, there are
various designs of anchor point that are commercially available, are proprietary designs
of trailer manufacturers, carriers or others, or are specially engineered for a specific
securement system. Articles of cargo will only be secured adequately if the anchor
points have the capacity to resist the highest likely operating load that will be
encountered. Depending on the capacity of an anchor point, it should be possible to
come up with a maximum load rating, perhaps as a function of direction of loading. This
would determine the maximum weight of cargo that could be secured to that anchor

42



point. It is clear that relatively "light" cargo, where that term remains undefined for now,
can be adequately secured to any of the anchor points normally provided on heavy duty
vehicles. It is equally clear that there is a much smaller range of anchor point that
should be used when a single heavy article must be secured. It seems clear that these
anchor points, at least, should be designated, and that all potential anchor points should
be adequately rated for the cargo that will be carried. Since the tests showed clearly
that a particular type of anchor point may have widely varying strength, depending on
how it is loaded, the rating could either reflect the possible modes of use, or use could
be restricted to a particular range of load direction. Where ratings do not exist, such as
for some portions of the structure of vehicles, it may be possible for manufacturers of
similar devices to develop consensus ratings for various product ranges.

The observation that many anchor points suffered substantial permanent deformation
at quite low loads is a concern. It is possible, for instance, that a hard stop that results
in cargo movement could jerk the tiedowns and cause such deformation, so that the
tiedowns become loose as the cargo settles subsequently. [t is clear that vehicles that
can carry heavy articles of cargo should have anchor points that will be free of
substantial deformation in any incident up to the most severe where the driver can
continue driving without having to stop. Essentially, this means any incident within the
performance capability of the vehicle and the space provided by the roadways, and this
therefore is any incident short of a crash. It is also clear that any manufacturers original
rating cannot be relied upon once an anchor point has become substantially deformed.
It should therefore either be repaired or replaced. There would seem to be a need for
(at least) a roadside inspection standard that would allow the effectiveness of a
damaged anchor point to be assessed.
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6/ Conclusions

A series of tests have been conducted, loading a variety of typical truck cargo anchor
points in various directions, mostly until complete structural failure occurred. The results
identify the mode of failure and allow an assessment of the load capacity of some of
these anchor points.

The following group of conclusions emerged from the preliminary work of selecting and
gathering the test articles.

1/

2/

3/

Tiedowns are attached to a variety of anchor points, which may be parts of the
vehicle structure or devices attached to it.

Cargo anchor points exist in a wide range of designs and load capacities.

The load capacity rating of many cargo anchor points cannot readily be
ascertained.

The following group of conclusions emerged from the tests reported here.

4/

5/

6/

7/

8/

9/

The ultimate load varied widely between types of anchor point, and within a given
type, due to differences in strength and design. This was expected, as the anchor
points tested were clearly designed for different uses and had different load
ratings.

For all anchor points other than D-rings, the ultimate load varied significantly with
load direction.

While some anchor points were quite strong, there are many that would not meet
Transport Canada's proposed 89 kN (20,000 Ib) ultimate strength.

Most anchor points started to exhibit permanent set, or yield, at loads substantially
lower than the ultimate load reached. In many instances, this was only 10-20%
of the ultimate load. Conventional allowable stress design generally calls for a
maximum stress of 40-66% of the material's yield stress. If this approach were
applied, many existing anchor points would have a very low rating.

A preliminary comparison of finite element structural analysis against the available
strain data showed good correlation. This suggests that such analysis may
provide an efficient and cost-effective tool for developing ratings anchor points.

There was little effect of corner radius and chain link orientation on the ultimate
strength of a given size of tiedown chain when loaded around a tight corner.

This report presents technical results from just one task in this project. The results may
be limited by the scope of this task, but are placed in context in the summary report [2].
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7/ Recommendations

The following recommendations arise from an overview of the work reported here.

1/ The on-going correlation of test and finite element structural analysis, based on
linear and non-linear models, should be completed to provide more confidence in
use of this analytical tool to develop standards for rating and use of heavy truck
cargo anchor points.

2/ Vehicles that can carry heavy articles of cargo require anchor points designated
for securement of that cargo.

3/  All anchor points should be provided with a load capacity rating.

4/  The manufacturer of an anchor point is in the best position to specify its load
capacity rating, so manufacturers should be involved in the range of these issues
from anchor point standards to consensus ratings of existing equipment.

5/  The possible directions of loading should be considered in developing the load
capacity rating of anchor points.

6/ A systematic method should be developed to evaluate when a damaged anchor
point should be repaired or replaced.
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Appendix A

Test Matrices and Test Setup Sketches
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Table A.1: Test Matrix for Stake Pocket Pull-Out Strength Tests

Purpose

To determine the strengths of stake pockets when pulled in various
directions, and ascertain the associated modes of failure.

Loading Direction

Test No. Grade/ Dimensions
Material (in) Longitud. | Lateral 45 deg
Vertical | Forward | Outboard | Outboard
1.a Light Steel 3x4x3/16 X
1.b Light Steel 3x4x3/16 X
1.d Light Steel 3x4x3/16 X
1.e Light Steel 3x4x3/16 X
2.a Medium Steel 4x4x3/16 X
2.b Medium Steel 4x4x3/16 X
2d Medium Steel 4x4x3/16 X
2.e Medium Steel 4x4x3/16 X
3.a Heavy Steel 4x4x1/4 X
3.b Heavy Steel 4x4x1/4 X
3.d Heavy Steel 4x4x1/4 X
3.e Heavy Steel 4x4x1/4 X
4.a Light Aluminum 3-1/2x4x1/4 X
4b Light Aluminum 3-1/2x4x1/4 X
4.d Light Aluminum 3-1/2x4x1/4 X
4.e Light Aluminum 3-1/2x4x1/4
5.a Medium Aluminum 4x4x1/4 X
5.b Medium Aluminum 4x4x1/4 X
5.d Medium Aluminum 4x4x1/4 X
5.e Medium Aluminum 4x4x1/4 X
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Figure A.1: Loading Directions for Stake Pocket Tests
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Table A.2: Test Matrix for D-ring Pull-Out Strength Tests

Purpose | To determine the strengths of D-rings when pulled in various
directions, and ascertain the associated modes of failure.
Grad_e/ Loading Direction
Test No. Material X 2 XY - 2% XYz
1.a Light Steel X
1.b Light Steel X
1.c Light Steel X
1.d Light Steel X
1.e Light Steel X
1.f Light Steel X
1.9 Light Steel X
2.a Medium Steel X
2.b Medium Steel X
2.c Medium Steel X
2.d Medium Steel X
2.e Medium Steel X
2.f Medium Steel X
2.9 Medium Steel X
3.a Heavy Steel X
3.b Heavy Steel X
3.c Heavy Steel X
3.d Heavy Steel X
3.e Heavy Steel X
3.f Heavy Steel X
3.9 Heavy Steel X
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Table A.3: Test Matrix for Winch Pull-Out Strength Tests

Purpose | To determine the strengths of winches when pulled in various
directions, and ascertain the associated modes of failure.
Loading Direction
Winch Attachment
Test No. Model Method Lateral 45 deg
Vertical Outboard Outboard

1.a High Profile Welded X

1b High Profile Welded X
1.c High Profile Welded X

2.a Low Profile Welded X

2.b Low Profile Welded X
2.c Low Profile Welded X

3.a High Profile Sliding X

3.b High Profile Sliding X
3.c High Profile Sliding X

4.a Low Profile Sliding X

4.b Low Profile Sliding X
4.c Low Profile Sliding X

5.a High Profile Clipped X

5b High Profile Clipped X
5.c High Profile Clipped X

6.a Low Profile Clipped X

6.b Low Profile Clipped X
6.c Low Profile Clipped X
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Table A.4: Test Matrix for Chain-in-tube Pull-Out Strength Tests

Purpose | To determine the strengths of chain-in-tube anchors when pulled in
various directions, and ascertain the associated modes of failure.
Loading Direction
Test No. Model Attachment
of Clip Vertical Lateral 45 deg
1.a Model "A" Welded X
1.b Model "A" Welded X
1.c Model "A" Welded X
2.a Model "B" Bolted X
2.b Model "B" Bolted X
2.6 Model "B" Bolted X
3.a Model "C" Welded X
3.b Model "C" Welded X
o) Model "C" Welded X
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Table A.5: Test Matrix for Welded Rod Pull-Out Strength Tests

Purpose

To determine the strengths of welded rods when pulled in various
directions, and ascertain the associated modes of failure.

Loading Direction

Test No. | Rod Size
(in) Z XY YZ ZX XYz
1.a 1/4
1.b 1/4
1.c 1/4 X
1.d 1/4 X
1.e 1/4 X
1.f 1/4 X
1.9 1/4 X
2.a 3/8
2.b 3/8
2.c 3/8 X
2.d 3/8 X
2.e 3/8 X
2.f 3/8 X
2.9 3/8 X
3.a 1/2
3.b 1/2
3.c 1/2 X
3.d 1/2 X
3.e 1/2 X
3.f 1/2 X
3.9 1/2 X
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Table A.6a: Test Matrix for Chain Wrap on Steel Pockets Tests

Purpose

To determine the impact of the manner in which a chain is hooked to
or wrapped around a stake pocket on the strength of the pocket.

Loading Directions

Wrap
Test No. | Material Method 45 deg 45 deg
Vertical Forward Aft
1.a Steel a X
1.b Steel a X
1.c Steel a X
2.a Steel b X
2.b Steel b X
2.c Steel b X
3.a Steel c X
3.b Steel C X
3.c Steel c X
4.a Steel d X
4.b Steel d X
4.c Steel d X
5 Steel e
6 Steel f
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Table A.6b: Test Matrix for Chain Wrap on Aluminum Pockets Tests

Purpose | To determine the impact of the manner in which a chain is hooked
to or wrapped around a stake pocket on the strength of the pocket.
Loading Direction
Test No. Wrap
Material | Method 45 deg 45 deg
Vertical Forward Aft

7.a Aluminum a X

7.b Aluminum a X

7.c Aluminum a X

8.a Aluminum b X

8.b Aluminum b X

8.c Aluminum b X

9.a Aluminum c X

9.b Aluminum o} X

9.c Aluminum c X
10.a Aluminum d X
10.b Aluminum d X

10.c Aluminum d X

11 Aluminum e

12 Aluminum f X
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Figure A.6: Wrap Configurations and Pull Directions for Chain Wrap Tests
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Table A.7: Test Matrix for Rub Rail Pull-Out Strength Tests

Purpose |To determine the strengths of rub rails when used as anchor points by a
chain.
. Location of Chain Loading Direction
Test No. Material Isq'iiltla Between Over 45 deg
(in) | spool & |AtSpool | Spool | Vertical | Inboard
Pocket
1.a Steel 3/8x3 X X
1.b Steel 3/8x3 X X
2.a Steel 3/8x3 X X
2b Steel 3/8x3 X X
3 Steel 3/8x3 X X
4.a Aluminum | 3/8 x2 X
4.b Aluminum | 3/8x2 X
5.a Aluminum | 3/8 x 2 X
5.b Aluminum | 3/8 x 2 X X
6 Aluminum | 3/8 x 2 X X
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Figure A.7: Loading Directions and Chain Locations for Rub Rail Tests
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Table A.8: Test Matrix for Corner Radius and Chain Link Orientation Effect Tests

Purpose To examine the effect of corner radius and chain link orientation on the strength of a
tiedown chain.
Corner Radius Chain Link Orientation
Test No. Chain size
(in) 1/8in 1in 2in Flat Upright Interlock
1.a 1/4 X X
1.b 1/4 X X
1.c 1/4 X X
2.a 1/4 X X
2b 1/4 X X
2.¢c 1/4 X X
3.a 1/4 X X
3.b 1/4 X X
e 1/4 X X
3.d 1/4 CONTROL TEST FOR 1/4 IN CHAIN
4.a 5/16 X X
4.b 5/16 X X
4.c 5/16 X X
5.a 5/16 X X
5.b 5/16 X X
5.c 5/16 X X
6.2 5/16 X X
6.b 5/16 X X
6.c 5/16 X X
6.d 5/16 CONTROL TEST FOR 5/16 IN CHAIN
7.a 3/8 X X
7.b 3/8 X X
7.c 3/8 X X
8.a 3/8 X X
8b 3/8 X X
8.c 3/8 X X
9.a 3/8 X X
9.b 3/8 X X
9.c 3/8 X X
9.d 3/8 CONTROL TEST FOR 3/8 IN CHAIN
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Appendix B

Tables of Test Results
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